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Abstract
 A system that acquires knowledge from a user should be able to reflect upon the knowledge that it has—at each
moment—and understand what kinds of new knowledge it needs to learn. For the past two decades, research in the area
of knowledge acquisition has been moving towards systems that have access to richer representations of knowledge
about their task.  This paper reviews some well-known knowledge acquisition tools representative of this trend.  It also
describes our recent work in EXPECT, a system with explicit representations of knowledge about the task and the
domain  that supports knowledge acquisition for a wider range of tasks and applications than its predecessors.  We hope
our observations will be useful to researchers in user interfaces and in machine learning concerned with acquiring
information from users.

Introduction

The acquisition of knowledge about a task can be viewed as a process of incorporating new knowledge into some existing
knowledge structure [Rosenbloom 1988].  The existing knowledge can guide and constrain the search for new knowledge,
and the process of integrating the new knowledge with the old may identify additional opportunities for learning.  An
acquisition system that takes this view needs to represent and understand the knowledge about the task as well as the process
of finding and integrating new knowledge.

A general trend in research on knowledge acquisition has been to make the knowledge structures that guide acquisition
increasingly explicit.  In early acquisition tools many of the requirements that needed to be satisfied when adding a new piece
of knowledge were not stated.  The result was that they could not provide very precise guidance for acquisition.  Later, more
of these requirements were made explicit, but they were embedded within the acquisition tools themselves.  This allowed the
tools to provide more specific guidance, but the requirements that were embedded in the tools could not be changed, which
meant that some important aspects of the knowledge-based system being built could not be changed.  More recent work has
focused on making these requirements explicit and represented outside of the tool itself.   A result of this has been more
flexible acquisition tools that allow users to make a greater variety of changes to the knowledge-based system being built.

To make this more concrete, we will begin by briefly reviewing three well-known acquisition systems: TEIREISIAS [Davis
1976], SALT [Marcus 1988], PROTÉGÉ-II [Musen and Tu 1993].  We will then describe EXPECT, the acquisition
framework we have been developing [Swartout and Gil 1995, Gil 1994, Gil and Paris 1994].  Each of these four systems
represents a point along the trend we outlined above.  We conclude with a discussion about how these systems make the
knowledge structures they use for acquisition more or less explicit, and summarize the implications of these differences in
terms of the kinds of knowledge acquisition they can support.

Symbol-Level Approaches

TEIREISIAS [Davis 1976] was one of the earliest knowledge acquisition systems.  It was designed to help a user correct and
extend MYCIN’s knowledge base [Buchanan and Shortliffe 1984] for diagnosing infections.  If MYCIN either incorrectly
concluded that a disease was present, or missed a correct diagnosis, TEIREISIAS would walk the user through the trace of
rule firings to determine where the error arose.  If an incorrect diagnosis was concluded, TEIREISIAS would display the rule
that led to the conclusion, and ask if any of the conditions on the rule needed to be changed.  If so, the user was given the
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opportunity to make the change.  If the rule was correct, but fired because some if its conditions were incorrectly asserted, the
process would recurse and the user could look at the rules that made those assertions to determine if they were correct.
Similarly, if a correct diagnosis was missed, TEIREISIAS would display the rule that could have caused that diagnosis to be
reached, and would walk the user through the process of determining why those rules did not fire and correcting the problem,
either by changing the conditions on the rules or by adding additional rules. When a new rule was added, TEIREISIAS
provided guidance based on rule models derived from the existing rule base through statistical conceptual clustering.  If rules
that concluded about a particular parameter x frequently mentioned some other parameter y  in their antecedents, then
TEIREISIAS would point out a possible error if the user left the parameter y out in a rule concluding about x.  This is useful,
but a long way from actually understanding the role that the rule plays in problem solving.

TEIREISIAS understood MYCIN at the symbol level [Newell 1982].  It understood rule patterns and why a particular rule
fired or did not fire, but it did not have a global view of the overall algorithm that MYCIN was following.  Indeed, work on
TEIREISIAS pre-dated Clancey’s analysis of MYCIN that showed that it was following the general problem solving strategy
that he identified as heuristic classification [Clancey 1985].  TEIREISIAS did not capture the distinctions between rules for
data abstraction, heuristic match, and solution refinement that charaterize a heuristic classification system.  Since
TEIREISIAS did not understand the roles that the rules played in a system, it could not provide much help in guiding the user
concerning the content of those rules.

Role Limiting Approaches

The next generation of knowledge acquistion tools represents what is called a role-limiting approach.  It was based on the
observation that the kind of problem solving method that a system uses determines the kind of domain information the
system needs [McDermott 1988].  Put another way, the role that a particular kind of knowledge plays in problem solving
strongly constrains how that knowledge should be expressed — what is required for the system to function.  A research goal
during this stage was to try to understand a number of general methods used by knowledge based systems [Chandrasekaran,
1986], such as propose-and-revise and heuristic classification, and then to construct a knowledge acquisition tool for a
particular method. Such tools could then be used to build knowledge based systems that used that particular problem solving
approach. Examples of such tools include MORE [Eshelman 1988], SALT [Marcus 1988], and ROGET [Bennett 1985].
Because these tools understood how knowledge would be used in problem solving, they could provide much more guidance
in helping the user formulate the knowledge he was adding to a system correctly.

SALT is a good example of a knowledge acquisition tool based on a role-limiting method.  SALT was used to develop
systems that use the propose-and-revise method to construct a solution to a problem.  Examples included a configurer for
elevators and a flow-shop scheduler.  In the propose-and-revise method, a system constructs an initial approximate solution to
a problem which may have a number of aspects that still remain to be determined.  It then proposes a design extension to fill
in missing parts of the design, and looks for possible constraints that may be violated.  If a constraint violation is detected, the
system has knowledge of fixes that may be used to revise the solution and correct the problem.  SALT captures this general
algorithm, and understands that the knowledge that needs to be acquired to support this method is knowledge of ways of
extending a design, the constraints that the design must satisfy, and ways of correcting constraint violations.  In other words,
these are the roles that new knowledge plays within the propose-and-revise strategy.  Because SALT was specifically
designed for building propose-and-revise systems, it includes tools that detect and correct problems that can arise in building
these systems, such as cycles in the fixes and constraints.

Role-limiting approaches center knowledge base construction on filling the roles that knowledge plays in the particular
problem-solving method that they are designed for. However, the problem solving method is built into the knowledge
acquisition tool itself.  Thus, when one selects a tool, one also determines the problem-solving method that is employed by
the application.  One problem with this is that many large-scale systems are not homogeneous.  That is, they do not use a
single problem-solving method throughout—some of the application can use one technique but different techniques are
needed for other parts.  As a result, an acquisition tool that only supports a single method has limited applicability [Musen
1992].

Composable Role-Limiting Methods

Rather than embodying a single problem solving method, some knowledge acquisition environments contain a library of
problem solving methods of smaller size.  New applications are built by composing the overall problem-solving strategy from



the smaller components of the library.  Examples of systems that take this approach are SBF [Klinker et al. 1991], COMET
[Steels 1990], and PROTÉGÉ-II [Musen and Tu 1993].

PROTÉGÉ-II guides acquisition based on fine-grained role-limiting methods. To build an application, a knowledge engineer
configures the overall problem-~solving method using the components in the method library.  At the same time, he or she
builds a method ontology that contains the terms that are used by the method being configured. For example, “constraint”
would be one of these terms and it would be identified as one of the kinds of knowledge needed by the component that
represents the revision stage of propose-and-revise.  A domain ontology that contains domain-specific knowledge is
represented separately. The knowledge engineer then links the knowledge roles in the method ontology to the domain
ontology, identifying how terms like “constraint” map onto domain-specific terms.  Once this mapping has been done, an
automatic interface builder uses the mapping to generate a knowledge acquisition tool that allows an end user to enter
domain-specific knowledge about the domain.  Through this mapping the system understands just how domain-specific
knowledge will actually be used, and the interface that is constructed thus requests the knowledge that will actually be needed
for problem solving.

Flexibility through Derived Interdependencies

A remaining problem is that while acquisition systems allow a user to make changes to a system’s factual knowledge, they do
not allow the user to make changes to the problem solving methods that the system employs.  Tools like SALT don’t allow
these changes because the problem solving method is implicitly encoded in the tool itself. PROTÉGÉ-II doesn’t allow such
changes because its methods are pre-configured and the mapping between method and domain ontologies is fixed at system
design time.  Since PROTÉGÉ-II’s knowledge acquisition tool is derived from that mapping, it too is fixed at design time.
The idea in EXPECT [Swartout and Gil 1995, Gil 1994, Gil and Paris 1994] is to derive the interdependencies between
domain knowledge and problem solving methods automatically, and to be able to re-derive the dependencies as needed when
changes are made to the problem solving knowledge.  This approach allows a user to modify either the domain knowledge or
the problem solving knowledge.  We have used EXPECT to create systems in several domains.  One of these domains is
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military transportation planning, where EXPECT was used to construct a system to evaluate transportation plans.  We will
use that domain to illustrate points in this paper.

A diagram of the architecture is shown in Figure 1.   Starting at the lower left in the figure, EXPECT’s knowledge bases
separate out factual knowledge and problem solving knowledge. Problem solving knowledge in EXPECT consists of a mix of
general, domain independent strategies as well as some that are domain specific.  EXPECT’s factual knowledge includes
facts about the domain and terminology that describes the domain, as well as domain-independent terms that are used by
problem-solving methods.  In EXPECT, each problem solving method has a capability description that describes what the
method can do.  Each method also has a body, which is a step or sequence of steps for achieving the method’s capability.
EXPECT’s method language supports conditionals, sequences of steps and embedded steps in method bodies.

The automatic method instantiator uses partial evaluation and reformulation (see [Swartout and Gil 1995]) to derive the
interdependencies between the problem solving methods and domain knowledge that are needed to guide knowledge
acquisition.  The method instantiator starts with a high level goal that specifies a class of problems for which one would like
to create a system.  For example, one might specify that one wanted to create a system to evaluate a transportation plan from
the perspective of logistics.  This high-level problem description contains “generic instances” which are placeholders for
actual data that will be used when solving specific problems.  Starting with this goal, the method instantiator searches the
method library for a method whose capability matches the goal. Among those that match, the most specific one is chosen, its
method body is instantiated, and the generic instances replace variables in the method.  If the method body contains any
subgoals, these are recursively expanded and the process continues.

During method instantiation, the system also records how domain relations and concepts are being used by the various
problem solving methods.  Figure 2 shows this linkage between the domain knowledge and the expansion of the problem
solving methods.  In the figure, the location of a seaport is used in one of the steps in the expanded method tree and berths of
a seaport is used in another.  Notice that there are some relations that are defined by the domain concepts but they are not
used in any of the problem solving steps, such as piers.  We expect that it will often be the case that domain ontologies will
contain some relations that are useful for some problem solving methods but not for others.  In particular, this would occur if
we wanted to re-use a domain ontology to support a different sort of problem solving.  For example, one might want to use
the same domain ontology in the related (but different) problem of scheduling transportation movements.  Much of the
domain information needed by the two applications would be similar, but some would be different. EXPECT can support
such re-use because its knowledge acquisition routines can focus acquisition on just the information that is actually needed to
support the particular problem solving methods in use.

EXPECT also allows a user to modify problem solving methods.  For example, in some transportation planning situations,
one might want to take into account additional resources that might be available.  For example, in figuring out the throughput
of a particular location, one might want to take into account not only the capacity of its seaports, but also of its marinas.  In
EXPECT, that could be done by modifying the method that finds the seaports of a location so that it finds the marinas as
well.  When that modification is made, EXPECT would re-derive the dependency structure shown in Figure 2, and it would
determine that information about the marinas of a location was no longer optional, but required.  Accordingly, EXPECT
would ask the user for information about the marinas for all the locations where information about marinas had not been
specified, like Los Angeles.

Summary

Table 1 summarizes the major issues that we have pointed out in this paper.  As the knowledge structures we use for learning
and acquisition become richer and more explicit, our acquisition tools can support a broader range of problem solving
methods, provide more guidance to the user and help the user make a wider variety of changes to a system.
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